Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms
dc.authorid | 0000-0003-2016-9965 | en_US |
dc.authorid | 0000-0003-2016-9965 | en_US |
dc.authorid | 0000-0003-3868-3137 | en_US |
dc.authorid | 0000-0002-2887-9235 | en_US |
dc.contributor.author | Er, Fusun | |
dc.contributor.author | Iscen, Pinar | |
dc.contributor.author | Sahin, Sevki | |
dc.contributor.author | Cinar, Nilgun | |
dc.contributor.author | Karsidag, Sibel | |
dc.contributor.author | Goularas, Dionysis | |
dc.date.accessioned | 2024-07-12T21:50:38Z | |
dc.date.available | 2024-07-12T21:50:38Z | |
dc.date.issued | 2017 | en_US |
dc.department | Maltepe Üniversitesi | en_US |
dc.description.abstract | Background and aim: This study aims to examine the distinguishability of age-related cognitive decline (ARCD) from dementias based on some neurocognitive tests using machine learning. Materials and methods: 106 subjects were divided into four groups: ARCD (n = 30), probable Alzheimer's disease (AD) (n = 20), vascular dementia (VD) (n = 21) and amnestic mild cognitive impairment (MCI) (n = 35). The following tests were applied to all subjects: The Wechsler memory scale-revised, a clock drawing, the dual similarities, interpretation of proverbs, word fluency, the Stroop, the Boston naming (BNT), the Benton face recognition, a copying-drawings and Oktem verbal memory processes (0VMPT) tests. A multilayer perceptron, a support vector machine and a classification via regression with M5-model trees were employed for classification. Results: The pairwise classification results show that ARCD is completely separable from AD with a success rate of 100% and highly separable from MCI and VD with success rates of 95.4% and 86.30%, respectively. The neurocognitive tests with the higher merit values were O-VMPT recognition (ARCD vs. AD), 0VMPT total learning (ARCD vs. MCI) and semantic fluency, proverbs, Stroop interference and naming BNT (ARCD vs. VD). Conclusion: The findings show that machine learning can be successfully utilized for distinguishing ARCD from dementias based on neurocognitive tests. (C) 2017 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | TUBITAK BIDEB [2211-C, 1649B031402382] | en_US |
dc.description.sponsorship | Current study was supported by TUBITAK BIDEB 2211-C (No: 1649B031402382). | en_US |
dc.identifier.doi | 10.1016/j.jocn.2017.03.021 | |
dc.identifier.endpage | 192 | en_US |
dc.identifier.issn | 0967-5868 | |
dc.identifier.issn | 1532-2653 | |
dc.identifier.pmid | 28347685 | en_US |
dc.identifier.scopus | 2-s2.0-85016816641 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 186 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1016/j.jocn.2017.03.021 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12415/8169 | |
dc.identifier.volume | 42 | en_US |
dc.identifier.wos | WOS:000405535800039 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.language.iso | en | en_US |
dc.publisher | ELSEVIER SCI LTD | en_US |
dc.relation.ispartof | JOURNAL OF CLINICAL NEUROSCIENCE | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | KY01847 | |
dc.subject | Age-related cognitive decline | en_US |
dc.subject | Dementia, machine learning | en_US |
dc.subject | Mild cognitive impairment | en_US |
dc.title | Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms | en_US |
dc.type | Article | |
dspace.entity.type | Publication |