Zaman serilerinde veri madenciliği öngörü algoritmalarının etkinlik ve verimliliğinin BIST100 hisse senetleri üzerinde gerçeklenmesi / Implementation of efficiency and productivity of time series data mining prediction algorithms on BIST100 stocks

dc.contributor.advisorGüvenoğlu, Erdal
dc.contributor.authorErguvan Etgin, Esin
dc.date.accessioned2024-11-11T14:46:42Z
dc.date.available2024-11-11T14:46:42Z
dc.date.issued2017
dc.date.submitted2017
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı
dc.descriptionTam Metin / Full Text
dc.description.abstractBu tezde, WEKA veri madenciliği yazılımındaki, 9 zaman serisi öngörü (forecasting) algoritmasının etkinlik ve verimliği, BIST-100 Hisse senetlerinden çeşitli alanlarda seçilen 5 hisse senedinin, 3 farklı dönemli veri setleri üzerinde 1 yıllık öngörüleri yapılarak kıyaslanmıştır. Bu uygulama için, banka, sanayi ve holding sektörlerinden 5 hisse seçilmiş ve algoritmalar, kısa (1 yıl), orta (3 yıl) ve uzun (5 yıl) dönemli, çok değişkenli zaman serisi veri setleri üzerinde uygulanmıştır. Ocak -Aralık 2016 arasındaki 12 aylık dönem için günlük bazda öngörüler ile etkinlik ve verimlilik analizleri yapılmıştır. Tezin ikinci bölümünde, literatür araştırması yapılmış ve ilgili çalışmalara değinilmiştir. Üçüncü bölümde, çalışmada kullanılacak olan tanımlar, algoritmalar, performans ölçüm kriterleri, WEKA uygulaması ve zaman serisi öngörü modülü konuları ele alınmıştır. Ayrıca bu bölümde veri setlerinin hazırlanmasına yer verilmiştir. Dördüncü bölümde, öngörü uygulaması, algoritmalar ve veri setlerinin performans ölçümleri ve öngörü grafikleri ele alınmıştır. Son olarak beşinci bölümde analiz sonuçları değerlendirilmiştir.
dc.description.abstractIn this thesis, the effectiveness and efficiency of the 9 time series forecasting algorithm in the WEKA data mining software are compared with the 1-year forecasts of the 5 selected stocks of BIST-100 Stocks in various fields over 3 different extent of data sets. For this application, 5 shares were selected from the bank, industry and holding sectors and the algorithms were applied on multivariate time series data sets for short (1 year), medium (3 years) and long (5 years). Daily basis predictions activity and productivity analyzes were conducted for the 12 month period between January – December 2016. In the second part of the thesis, a literature search was carried out and related works were mentioned. In the third part, the definitions, algorithms, performance measurement criteria, WEKA implementation and time series prediction module which will be used in the study are discussed. In addition, preparation of data sets is included in this chapter. In the fourth chapter, forecasting application, performance measures of algorithms and data sets, and forecasting graphics are discussed. Finally in the fifth section, the results of the analysis were evaluated.
dc.identifier.citationErguvan Etgin, E. (2017). Zaman serilerinde veri madenciliği öngörü algoritmalarının etkinlik ve verimliliğinin BIST100 hisse senetleri üzerinde gerçeklenmesi / Implementation of efficiency and productivity of time series data mining prediction algorithms on BIST100 stocks. (Yayımlanmamış Yüksek Lisans Tezi). Maltepe Üniversitesi, Lisansüstü Eğitim Enstitüsü, İstanbul.
dc.identifier.urihttps://hdl.handle.net/20.500.12415/12946
dc.identifier.yoktezid486677
dc.language.isotr
dc.publisherMaltepe Üniversitesi, Lisansüstü Eğitim Enstitüsü
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectVeri madenciliği
dc.subjectZaman serisi veri madenciliği
dc.subjectZaman serisi veri madenciliği öngörü algoritmaları
dc.subjectPerformans analizi
dc.subjectWEKA uygulaması
dc.subjectData mining
dc.subjectTime-series data mining
dc.subjectTime-series data mining algorithms for prediction
dc.subjectPerformance analysis
dc.subjectWEKA application
dc.titleZaman serilerinde veri madenciliği öngörü algoritmalarının etkinlik ve verimliliğinin BIST100 hisse senetleri üzerinde gerçeklenmesi / Implementation of efficiency and productivity of time series data mining prediction algorithms on BIST100 stocks
dc.title.alternativeImplementation of efficiency and productivity of time series data mining prediction algorithms on BIST100 stocks
dc.typeMaster Thesis
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Esin_Erguvan_Etgin_Zaman_Serilerinde_Veri_Madenciliği.pdf
Boyut:
8.74 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed to upon submission
Açıklama: