Yazar "Camtakan, Zeyneb" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Effect of Mn, Ni, Co transition metal ratios in lithium rich metal oxide cathodes on lithium ion battery performance(Elsevier, 2020) Çetin, Büşra; Camtakan, Zeyneb; Yuca, NeslihanLithium rich layered metal oxide is a high energy density cathode material for new generation lithium ion batteries (LIBs). This material has Li [Li1/3Mn2/3]O-2 and LiMO2 (M: Ni, Co, Mn, Al etc.) structure and exhibit higher irreversible capacity and cycle life than conventional cathode materials. In this study, the stoichiometry of metals in the lithium rich cathode material formulation was investigated by changing Mn, Ni and Co ratios. Li1.2Mn0.49+xCo0.2-2xNi0.2-2xAl0.02O2 (x = 0, 0.01, 0.02, 0.03). formulation was used and the prepared lithium rich cathode active powders were structurally characterized by XRD, ICP and NAA. Li-rich cathodes were tested by electrochemical methods, too. (c) 2019 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the E-MRS Fall Meeting, 2019. All rights reserved.Yayın Synthesis and characterization of li-rich cathode material for lithium ion batteries(Elsevier, 2020) Cetin, Busra; Camtakan, Zeyneb; Yuca, NeslihanLithium rich (Li-rich) transition metal oxide cathodes are considered to be among the most promising intercalation cathode materials used for lithium-ion batteries (LIBs) with their high energy density above 900?Wh/kg. Li1.252Mn0.557Ni0.123Co0.126Al0.0142O2 layered Li-rich nickel manganese cobalt (NMC) cathode material was synthesized by sol-gel method. This study aims to reveal the superiority of Li-rich cathode material over existing commercial cathodes. The stoichiometric ratio of Li-rich cathode material was confirmed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), portable X-ray Fluorescence (pXRF) and Instrumented Neutron Activation Analysis (INAA). Structural and morphological characterization of Li-rich NMC material was examined with X-ray diffraction (XRD) and Scanning Electron Microscopy-Emission with Energy Dispersive Spectroscopy (SEM-EDS). Electrochemical performances of Li-rich NMC and commercial NMC111 cathode materials in coin cell at C/10, C/5 and 1C were investigated. The discharge capacity of Li-rich NMC and NMC111 was found to be 160, 156, 96 mAhg?1 and 153, 120, 72 mAhg?1 at C/10, C/5, 1C, respectively.